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In the present work, using the glue potential, the constant pressure molecular-dynamics simulations of liquid
Al under five various pressures and a systematic analysis of the local atomic structures have been performed in
order to test the two-order-parameter model proposed by Tanaka �Phys. Rev. Lett. 80, 5750 �1998�� originally
for explaining the unusual behaviors of liquid water. The temperature dependence of the bond order parameter

Q6 in liquid Al under five different pressures can be well fitted by the functional expression
Q6

1−Q6

=Q60 exp� �E−P�V
kBT � which produces the energy gain �E and the volume change upon the formation of a locally

favored structure: �E=0.025 eV and �V=−0.27 �Å�3. �E is nearly equal to the difference between the
average bond energy of the other type I bonds and the average bond energy of 1551 bonds �characterizing the
icosahedronlike local structure�; �V could be explained as the average volume occupied by one atom in
icosahedra minus that occupied by one atom in other structures. With the obtained �E and �V, it is satisfac-
torily explained that the density of liquid Al displays a much weaker nonlinear dependence on temperature
under lower pressures. So it is demonstrated that the behavior of liquid Al can be well described by the
two-order-parameter model.
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I. INTRODUCTION

As well known, both gas and liquid phases are isotropic
and homogeneous and have complete translational and rota-
tional symmetries. Moreover, there is no loss of symmetry in
going from the gas to the liquid phase. The isotropy and
homogeneity mean that the average environment of any
point is identical to that of any other point. The principal
physical quantity distinguishing the liquid phase from the
gas phase is the density. Because of these features, it has
been widely believed that a liquid can be described by just
one order parameter, density �. Although the density of liq-
uid phase is uniform, the correlation between the positions of
neighboring atom is strong; i.e., there is a strong peak at the
near-neighbor spacing and less pronounced peaks at next-
near and further neighbor separations in pair distribution
functions. The strong correlations �local order� become in-
creasingly more important as temperature is decreased.1

There are number of studies that have tried to improve the
theory of liquids by including many-body effects or higher-
order density correlation. Despite numerous experimental
and theoretical attempts to determine the structural nature of
liquids, no satisfactory understanding has been attained be-
cause of the complexity of the structure. The most important
is the concept of local bond-orientational order, which is
based on the fact that even spherical molecules locally favor
a tetrahedral configuration in a liquid phase. For example,
Frank2 pointed out that icosahedral clusters, composed of 13
particles, have a significantly lower energy than the more
obvious crystallographic arrangements of the corresponding
fcc or hcp structures. But it is impossible to fill space by
packing icosahedra. There is a competition between a local
preference for icosahedral structure and the global require-
ment of filling space. Hence, contrary to the one-order-
parameter description of liquids, Tanaka3–10 recently pro-

posed a two-order-parameter model, density, and bond order
parameters. The density order parameter maximizes the
�globe� density �or packing� and leads to the crystallization
representing the long-range ordering. At the same time, how-
ever, the bond order parameter maximizes the quality of lo-
cal bonds and leads to the formation of the locally favored
structures representing the short-range order, which can be
viewed as a consequence of specific many-body interactions.
Note that the symmetry of locally favored structures is gen-
erally inconsistent with the crystallographic symmetry. As
mentioned above, the spherical atoms locally favor icosahe-
dral arrangements, which are in a lower-energy state than
that of the corresponding fcc, hcp, or bcc �most stable or
metastable� crystalline units. Therefore, the following physi-
cal picture of liquid was proposed by Tanaka:3 �i� in any
liquids there exist well-defined and unique locally favored
structures �which is in the lower-energy state� and �ii� such
local structures are excited in a sea of another disordered
background structure �normal-liquid structure, being in a
higher-energy state�. For the simple liquid metals the disor-
dered background structures could be a mixture of some
characteristic pairs/units, which can be thought as crystal
�fcc, hcp, and bcc or most stable and metastable� basic units
�for example, 1421, 1422, and 1441 and 1661 pairs are re-
lated to fcc, hcp, and bcc structures, respectively11�. Since
these pairs/units are present substantively in liquid metals
and during the cooling process, besides the competition be-
tween glass formation and crystallization, there are other
competitions among all kinds of crystalline structures.12–16

The relevance of the two-order-parameter model of liquid is
supported by the successful description of water’s
anomalies3,7,8 and by the well explanation of the temperature
dependence of the structure factor and the thermodynamic
anomalies of density and heat capacity in liquid Si in a co-
herent manner.10 But little is known of the applicability of
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the two-order-parameter model to the properties of liquid
metals. It is interesting to see whether or not the two-order-
parameter model is successful in understanding the tempera-
ture dependence of liquid metals properties.

It is found experimentally that the temperature depen-
dence of density for liquid metals and alloys is linear. How-
ever, for Al, there are sufficient data to indicate that the den-
sity does not change linearly with temperature over the
whole liquid range.17 In the present work, we have carried
out molecular-dynamics �MD� simulations by using a many-
body potential in order to describe the evolution of some
locally favored structures during the cooling process and the
effect of high pressure on the local structural order in liquid
Al in hope of performing a test of the two-order-parameter
model on the properties of liquid Al. The rest of the paper is
organized as follows: in Sec. II, we describe the method of
our simulations; the results of our simulations and the corre-
sponding discussion are reported in Sec. III; and a short sum-
mary is given in Sec. IV.

II. COMPUTATIONAL METHODS

The glue potential developed by Ercolessi and Adams18

can correctly reproduce many basic properties of Al in crys-
talline and noncrystalline phases.19–22 In our present work,
the glue potential is employed to model the Al atomic inter-
action. The MD simulations of the cooling of Al system are
performed under constant pressure conditions including 0.0,
0.1, 1.0, 2.0, and 3.0 GPa. The simulated system consists of
4000 atoms in a cubic cell with periodic boundary condi-
tions. The Newtonian equations of motion were integrated
using the velocity-Verlet algorithm with a time step of 5.3
�10−16 s. The well-equilibrated initial system was prepared
by heating the perfect crystal gradually. Then this system
was cooled down with a sequentially cooling model, which
means that after a period of temperature drop it experienced
a relaxation process with 20 000 steps. During the later 6000
steps of relaxation process, 20 configurations were saved to
collect data for analyzing the microstructures by another pro-
gram. According to Abraham’s suggestion,23 the glass transi-
tion temperature Tg can be obtained using intersection of two
lines with different slopes in the enthalpy versus temperature
curves. In the meantime, the time-dependent mean-square
displacement �MSD� was calculated. Here we only present
and discuss the results of liquid Al, that is, the temperature
ranges are above Tg, and the MSD is linear with time. All the
results of structural analysis are obtained by averaging over
20 configurations.

To analyze the bond orientational order in noncrystalline
states, Steinhardt et al.24 proposed the bond order parameter
Qlm, Qlm�R�=Ylm���R� ,��R��. Here Ylm�� ,�� denotes the
spherical harmonic function, � and � refer to the polar
angles of the bond measured with respect to the reference
coordinate system, and R is the midpoint of a bond. The
average of their rotationally invariant combination can be
calculated,

Ql = � 4�

2l + 1 �
m=−l

l

�Q̄lm�2�1/2

. �1�

In the present work, we use Q6 as the bond order parameter
of the two-order-parameter model since there exist a great of
icosahedral units in liquid Al.

The pair analysis technique proposed by Honeycutt and
Andersen11 has been widely used to monitor liquid, glass,
and crystalline structures. In this technique, pairs of atoms
can be classified by the relationship among their near neigh-
bors with four indices of integer. A pair of atoms are said to
be near neighbors or, equivalently, are considered to form a
bond �a root pair� if they are within this cut-off distance,
chosen to equal the position of the first minimum in the pair
distribution function. The first index is 1 if the pair is bonded
and 2 otherwise; these are denoted as type I and II pairs/
bonds. The second index represents the number of near
neighbors shared by the root pair. The third index represents
the number of the bonds among the shared neighbors. The
fourth index is introduced to resolve the ambiguity about the
arrangement of the bonds. The 1551 pair/bond corresponds
to two near-neighboring atoms with five common near neigh-
bors forming a pentagon of near-neighbor contacts and thus
characterizes the icosahedronlike local structure. An icosahe-
dron has 12 pairs of 1551 bonds between the central atom
and its near neighbors. Because in the two-order-parameter
model the bond order parameter maximizes the quality of

local bonds, the difference ��Ēb� between the average bond
energy of 1551 bond and the average bond energy of the
other type I bonds may be related to �E �the energy gain
upon the formation of a locally favored structures� in the
two-order-parameter model. Here the bond energy for two
atoms i and j connected by a bond of type l is defined by

El =
1

2
��rij� +

1

2��k

U�rik� + �
m

U�rjm�� , �2�

where ��r� is a pair potential and U�r� is a “glue function”
for many-body potential �for more details, see Ref. 18�.

An icosahedron is a compact cluster of 20 tetrahedra.
There are eight tetrahedra formed by the near-neighboring
atoms in a unit cell of fcc structure, indicating one atom
occupies the volume of two tetrahedra, and for hcp struc-
tures, there also exist two tetrahedra for one atom. Thus, we
calculate the volume of tetrahedra in the icosahedra and their

average volume �V̄t,ico�. We also calculate the volume Vi1 and
Vi2 of two smallest tetrahedra among the tetrahedra �except
those have counted in the icosahedra� formed by any atom i
and its near neighbors. Then we obtain the average volume

�V̄t,other� of the other tetrahedra for all atoms in the simulated

system and the average volume difference �V̄t= V̄t,ico

− V̄t,other, which may be related to the volume increase/
decrease upon the formation of locally favored structures in
the two-order-parameter model. In order to define the fine
difference of the related structure units in energy and vol-
ume, we employed the inherent structure mechanism pro-
posed by Stillinger and Weber.25 That is, we first relax the
simulated system at a certain temperature to its closest local
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minimum by a conjugate gradient energy minimization, then

analyze the inherent structure, and finally calculate �Ēb and

�V̄t as described above.

III. RESULTS AND DISCUSSIONS

In the two-order-parameter model, one is for the state of
normal-liquid structures �j=�� and another is for the state of
locally favored structures �j=S�. The equilibrium average of

the fraction of locally favored structures S̄ can be straightfor-
wardly obtained as

S̄

1 − S̄
=

gs

g�

exp	�E − P�V

kBT

 , �3�

where g� and gs are the degeneracy of normal-liquid struc-
tures and locally favored structures, respectively, and �E
�=E�−Es� and �V �=Vs−V�� are the energy gain and the
volume change upon the formation of a locally favored struc-
ture, respectively. Figure 1 shows the bond order parameter
Q6 as a function of temperature for five different pressures. A
glance of these data shows that there exists the similar de-
pendence for all studied pressures: as temperature is lowered,
Q6 increases exponentially. At high temperatures, locally fa-
vored structures are created randomly in space and time. At
low temperatures, on the other hand, locally favored struc-
tures are created at higher probability. Now we quantitatively
analyze the temperature dependence of Q6 �which represents

S̄� and the pressure effect. As shown in Fig. 1, the tempera-
ture dependence of Q6 can be well fitted by the functional
expression

Q6

1−Q6
=Q60 exp�Ef /kBT� for five studied pressures.

These fits of data yield the pre-exponential factor Q60 and Ef.
Here Ef is defined as the favorable energy representing the
energy gain originated from the formation of a locally fa-
vored structure. We plotted Q60 and Ef as a function of pres-
sure in Fig. 2. The pre-exponential factor Q60 is about 0.5
and smaller than 1 indicating gS�g�, which is reasonable.
Moreover it first increases with pressure and then levels off
but the whole increment is much small, indicating the effect
of pressure on Q60 is insignificant. As can be seen from Fig.
2, the linear fit of the pressure dependence of Ef is quite
satisfactory and produces �E and �V: �E=0.025 eV and
�V=−0.27 �Å�3. What is the meaning of these two con-
stants, 0.025 eV and −0.27 �Å�3? �E is much smaller com-
pared to 0.155 eV in water.7 It should be stressed that here
�V is negative, forming a striking contrast to the positive
value ��V=16.6 �Å�3� in water.7 No doubt, the reasonable
explanation for both �E and �V will give a strong support to
the two-order-parameter model. Keep this key question in
mind, we first calculate the bond energy of all kinds of bonds
using Eq. �2� and then the average volume of tetrahedra in

the icosahedra �V̄t,ico� and the average volume �V̄t,other� for
the other tetrahedra described in Sec. II.

Figure 3 displays the temperature dependence of average
bond energy for 1551 bonds E1551 and the other type I bonds
Eother and their difference �Eb=Eother−E1551. Note that Eother
and E1551 are calculated from the inherent structures. It is
obvious that both Eother and E1551 decrease with the tempera-
ture, but �Eb nearly keeps a constant of 0.022 eV. If we
assume that Es is represented by the average bond energy of
1551 bonds and E� is represented by the average bond en-
ergy of the other type I bonds, E�−Es=0.022 eV, which is in
good agreement with the above-obtained energy gain �E
=0.025 eV. This implies that the locally favored structures
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FIG. 1. �Color online� The bond order parameter Q6 as a func-
tion of temperature. The solid lines are best fits to the data using
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FIG. 2. �Color online� The pre-exponential factor Q60 �solid
circle� and the favorable energy Ef �star� versus the pressure. The
dotted line is a guide to the eyes, and the solid line is a curve fit
obtained assuming a linear behavior, Ef =�E− P�V.
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in liquid Al is related to icosahedronlike units, also undoubt-
edly provide a positive support to the two-order-parameter
model. The small �E indicates that the difference between
locally favored structures and normal structures is much
small; so in high temperature, there are many kinds of bonds
such as 1551, 1541, 1431, 1421, and 1422 binds in liquid Al.
The population of 1551 bonds is not obviously larger than
other bonds, but as the temperature is lowered the 1551
bonds increase faster than other bonds and become the larg-
est among all type I bonds.

Figure 4 presents the temperature dependence of average

volume for the tetrahedra in icosahedra �V̄t,ico� and the other

tetrahedra �V̄t,other� along with their difference ��V̄t= V̄t,ico

− V̄t,other�. Note that, V̄t,ico and V̄t,other are also calculated from

the inherent structures. Both V̄t,ico and V̄t,other linearly de-

crease with lowering temperature, but their difference �V̄t

nearly keep a constant of �V̄t=−0.123 �Å�3. The illustration
in Sec. II indicates that one atom occupies two tetrahedra
volume. The above-obtained �V�=−0.27 �Å�3� is about two

times �V̄t�=−0.123 �Å�3�. Therefore, in liquid Al the volume
decrease upon the formation of a locally favored structure
could be explained as the average volume occupied by one
atom in icosahedra minus that occupied by one atom in other
structures.

Thus, we make a reasonable explanation for the obtained
�E and �V. Now we extend our study on the temperature
dependence of density � under various pressures. Figure 5
shows the density as a function of temperature under five
different pressures. Note that in melting point the experimen-
tal density of liquid is 2.38�103 kg m−3,17 our result is in
good agreement with it. From this figure, we can see that

under lower pressures such as 0.0 and 0.1 GPa there exists a
noticeable nonlinear dependence of the density on the tem-
perature. Moreover this nonlinear dependence weakens and
becomes linear with increasing pressure. In the light of the
two-order-parameter model, the temperature and pressure de-
pendences of the density can be expressed as
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��T,P� = a�P� + b�P�T − c�P�
Q6

1 − Q6
, �4�

where the background part is assumed as the linear-
temperature dependence, a�P�+b�P�T, similar in liquid
water3,7 and in liquid Si;10 a, b, and c are the fitting param-
eters. So in our present work, using the above-obtained value
of �E and �V, we make the fits of Eq. �4� to all data shown
in Fig. 5. These fits are shown by solid lines in Fig. 5 and
quite satisfactory indicating that with the obtained �E and
�V the two-order-parameter model can well describe the
temperature and pressure dependences of the density in liq-
uid Al. For making the discussion more quantitatively, the
fitting parameters a, b, and c are presented in Fig. 6 as a
function of pressure. a ranges from 1.31�103 to 2.54
�103 kg m−3 and b ranges between −1.06�10−1 and
−2.73�10−1 kg m−3 K−1, The former increases with in-
creasing pressure, and the later decreases with increasing
pressure, which is in agreement with the background part
being increased with the pressure as shown in Fig. 5. c is a
key parameter which together with the bond order parameter
controls the anomalous temperature dependence of some

quantities. In our simulated liquid Al c is negative and in the
range of −1.74�−0.43�103 kg m−3 for various pressures,
in contrast with the relatively large positive values in liquid
water3 and liquid Si.10 So it is reasonable that the nonlinear-
ity of the temperature dependence of density �see Fig. 5� in
liquid Al is opposite in the curvature to that �Fig. 2 of Ref. 3
and Fig. 3 of Ref. 10� in liquid water and liquid Si. With
increasing pressure the magnitude of c becomes small, which
weakens the nonlinear temperature dependence of density;
i.e., the curvature of the curves is close to zero. So it is
observed that under higher pressures such as 3.0 GPa the
density shows a linear dependence on the temperature.

IV. CONCLUSION

Using the glue potential we have performed constant-
pressure molecular-dynamic simulations of liquid Al under
five various pressures in order to test the two-order-
parameter model proposed by Tanaka3 originally for explain-
ing the unusual behaviors of liquid water. The temperature
dependence of the bond order parameter Q6 in liquid Al un-
der five different pressures can be well fitted by the func-
tional expression

Q6

1−Q6
=Q60 exp� �E−P�V

kBT �. The fits yield the
energy gain �E and the volume change upon the formation
of a locally favored structure; �E=0.025 eV and �V=
−0.27 �Å�3. We found that �E approximates to the differ-
ence between the average bond energy of other type I bonds
and the average bond energy of 1551 bonds; �V could be
explained as the average volume occupied by one atom in
icosahedra minus that occupied by one atom in other struc-
tures. Using the obtained �E and �V, we have well de-
scribed the temperature and pressure dependences of the den-
sity of liquid Al. Hence, it is demonstrated that the behavior
of liquid can be described by the two-order-parameter model.
It should be stressed that in liquid Al the energy gain is
greatly smaller than that in liquid water. Moreover in liquid
Al the volume does decrease a little because of the formation
of the locally favored structure, whereas in water the volume
does increase quite a little. Thus, for example, the density of
liquid water shows a strongly abnormal behavior; however
the density of liquid Al displays a much weakly nonlinear
dependence on temperature only under lower pressures.
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